Evaluating Primary Blast Effects In Vitro
نویسندگان
چکیده
Exposure to blast events can cause severe trauma to vital organs such as the lungs, ears, and brain. Understanding the mechanisms behind such blast-induced injuries is of great importance considering the recent trend towards the use of explosives in modern warfare and terrorist-related incidents. To fully understand blast-induced injury, we must first be able to replicate such blast events in a controlled environment using a reproducible method. In this technique using shock tube equipment, shock waves at a range of pressures can be propagated over live cells grown in 2D, and markers of cell viability can be immediately analyzed using a redox indicator assay and the fluorescent imaging of live and dead cells. This method demonstrated that increasing the peak blast overpressure to 127 kPa can stimulate a significant drop in cell viability when compared to untreated controls. Test samples are not limited to adherent cells, but can include cell suspensions, whole-body and tissue samples, through minor modifications to the shock tube setup. Replicating the exact conditions that tissues and cells experience when exposed to a genuine blast event is difficult. Techniques such as the one presented in this article can help to define damage thresholds and identify the transcriptional and epigenetic changes within cells that arise from shock wave exposure.
منابع مشابه
In vitro studies of primary explosive blast loading on neurons.
In a military setting, traumatic brain injury (TBI) is frequently caused by blast waves that can trigger a series of neuronal biochemical changes. Although many animal models have been used to study the effects of primary blast waves, elucidating the mechanisms of damage in a whole-animal model is extremely complex. In vitro models of primary blast, which allow for the deconvolution of mechanis...
متن کاملPrimary blast survival and injury risk assessment for repeated blast exposures.
BACKGROUND The widespread use of explosives by modern insurgents and terrorists has increased the potential frequency of blast exposure in soldiers and civilians. This growing threat highlights the importance of understanding and evaluating blast injury risk and the increase of injury risk from exposure to repeated blast effects. METHODS Data from more than 3,250 large animal experiments were...
متن کاملNumerical modeling of primary thoracic trauma because of blast
Purpose: Since explosive blasts continue to cause casualties in both civil and military environments, there is a need for an understanding of the mechanisms of blast trauma at the human organ level, plus a more detailed predictive methodology. The primary goal of this research was to develop a finite element model capable of predicting primary blast injury to the lung so as to assist in the d...
متن کاملIN VITRO STUDY OF AN ENDOGENOUS IMMUNOSUPPRESSOR FACTOR DERIVED FROM HUMAN OR BOVINE SERUM
The effects of the human and bovine LSF (derived from sera) as well as their purified fractions were studied on murine lymphocytes reactions indicated by blast transformation (BT) assay, mixed lymphocyte culture (MLC) and IgG synthesis. The results indicated that bovine lipid suppressor factor (LSF) has significant immunosuppressive activity on lymphocytes proliferation both in BT and MLC ...
متن کاملPrimary blast injury erases long term potentiation in rat brain organotypic hippocampal slices
Traumatic brain injury (TBI) has been diagnosed in nearly 300,000 members of the US armed forces since 2000 [1]. Common symptoms of these injuries include concussion, loss of spatial navigation, behavior/mood changes and memory loss [2‐3]. Blast‐related TBI poses a significant problem for military personnel both in combat and in training. Primary blast loading, the blast loading caused by the i...
متن کامل